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Front propagation in a random medium with a power-law distribution of transit times
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We perform Monte Carlo simulations of front propagation in a two-dimensional random medium in
which a fraction 1—p of the bonds have infinite transit time and the remainder have finite transit times ¢
drawn from a probability distribution f (). We take f(t) to be zero for ¢ <1 and to decay as ¢t " for
t>1. At the percolation threshold, we recover the usual values for the kinetic critical exponents when
7> 2, but these exponents vary continuously with 7 for 7€(1,2]. For p =1, the kinetics of the front ap-
pear to be correctly described by the Kardar-Parisi-Zhang equation when 7>2. In contrast, we find

anomalous scaling behavior for 7=1.75.

PACS number(s): 64.60.Ak, 05.70.Ln, 05.40.+j

I. INTRODUCTION

First-passage percolation (FPP) has been applied to
such diverse topics as the propagation of signals through
random media, the spread of epidemics, combustion of
disordered materials, and forest fires [1-7]. FPP is also
closely related to the problem of finding the shortest path
between two points in a random medium.

To define FPP, it is convenient to speak of the propa-
gation of a combustion front through a disordered ma-
terial, but it should be kept in mind that the applications
are broader than this language suggests. Consider a regu-
lar lattice in which all sites and bonds are initially un-
burned and the bonds all have length a. Each bond is as-
signed a transit time ¢ drawn from a random distribution
P(t). For a given bond, ¢ is the time that it will take the
flame front to travel from one end of the bond to the oth-
er. Thus a/t is the velocity of flame propagation for this
bond. At time t =0, a site is set on fire. The flame front
propagates along the bonds containing this site with the
prescribed velocities. Behind the front there is burned
material, and ahead of it is unburned material. At some
point, a second site is set alight by the advancing front.
The flame front then begins to propagate along the un-
burned bonds containing this site. The combustion con-
tinues in this fashion for all subsequent times. We as-
sume that when material burns, it is completely con-
sumed, and so it can never be burned again.

Kerstein and Edwards (KE) have studied FPP with a
binary distribution of transit times P(t)=p&(t—t_)
+(1—p)6(t—t, ) [8]. Here pE[0,1] is a constant and
t_<t,. Physically, t_ (¢,) is the transit time for fast-
burning (slow-burning) bonds. This model is a generali-
zation of the much-studied special case in which #_ is
nonzero and finite and ¢, = . We will refer to this spe-
cial case as “kinetic percolation,” and it describes com-
bustion of a random mixture of flammable and perfectly
flame-resistant materials. There is a phase transition in
kinetic percolation at the percolation threshold p =p_ for
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bond percolation. For p <p,, the front eventually ceases
to propagate, while for p >p. the burning may never
cease. In the latter case, if the front does continue to
propagate indefinitely, it does so with a well-defined
asymptotic front velocity v. As p tends to p, from above,
v~(p—p.)% In two dimensions (2D), Grassberger [9]
has estimated that 8=0.176+0.006.

KE also considered FPP with a power-law distribution
of transit times. Specifically, they set

P(t)=pf(t)+(1—p)8(t— ), (1.1)
where
_ (r—1)~7, fort>1
f= 0 otherwise. 1.2)

Note that the parameter 7 must exceed 1 for f(¢) to be
normalizable. For 7> 2, the distribution f (¢) has a finite
mean 7, and we expect that the critical behavior will be
the same as in kinetic percolation. In contrast, for
1<7=2, the mean of f(t) is infinite, and anomalous scal-
ing behavior could occur. Indeed, KE developed an ap-
proximate variational theory that yields the anomalous
exponent

2—T
7—1

60=20,+ (1.3)
for 1 <7<2. (6, is defined to be the value of 8 for 7> 2).

There is another reason that we expect anomalous scal-
ing behavior for 1 <7<2. As emphasized by KE, there is
a close analogy between the first-passage time and the
conductivity in disordered media. This analogy was ex-
ploited by KE to obtain a scaling form for the propaga-
tion velocity v, and to construct their variational theory
for the exponent 6. It has long been known that percola-
tion with a sufficiently broad power-law distribution of
resistances has an anomalous conductivity exponent [10].
The analogy of KE would therefore suggest that FPP has
anomalous scaling behavior for 7 close to 1.
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In this paper, we perform simulations of FPP with the
distribution of transit times given by Egs. (1.1) and (1.2).
Our results suggest that the exponent 6 has a value in-
dependent of 7 for 7> 2, and that this value is the same as
that found for kinetic percolation. For 7<2, the critical
exponents vary continuously with 7. The behavior of 6 is
in reasonable agreement with the variational theory of
KE in this region.

We have also studied the scaling behavior of our model
for p =1. In this case, all of the bonds are eventually
burned, and there is a rough growing interface between
the burned and unburned regions. Growing interfaces
have been the subject of intensive study since the seminal
work of Kardar, Parisi, and Zhang (KPZ) [11]. KPZ
studied the time evolution of a surface with height 4 (x, )
governed by the nonlinear Langevin equation
2

2
Oh _,3h 4 A +7(x,1) .

—_—=y— 4 —

at Ax? 2

oh

O (1.4)

This equation is now known as the (1+ 1)-dimensional
KPZ equation. KPZ considered the case in which the
noise 7(x,t) has a Gaussian distribution with
(n(x,t))=0and

(q(x,t)n(x",t")) =2D&(x —x")8(t —t') ,

where D is a constant. For growth in a strip of width L,
the interface width w scales as

L% for t>L"*

|t for t<<L?, (1.5

w

where z=a/B. The values of the critical exponents are
known exactly: KPZ showed that =1 and B=1. The
exponents satisfy the identity

zta=2. (1.6)

It is believed that the KPZ equation describes the scaling
behavior of many lattice growth models, including the
Eden model and ballistic deposition [12].

Motivated by experiments that yielded values of a sub-
stantially greater than the KPZ value of J, Zhang con-
sidered the behavior of interfaces governed by the KPZ
equation with a non-Gaussian, power-law distribution of
noise [13]. Specifically, he assumed that at any point in
the (1+1)-dimensional space 1 has a probability density
P(7) that decays as 1/7'*# for 7> 1 and that is zero for
n<1. He also assumed that the noise is independently
distributed at each point. Zhang’s simulations yielded
values of a and BB that vary with u, at least when p is not
too large. The exponents for the Zhang model are now
known exactly [14]. In 141 dimensions, the exponents
vary continuously with u for 2 <u <5, and reduce to the
KPZ values for u=>5.

Inspired by Zhang’s work, Roux and co-workers
[15,16] considered a variant of the Eden model in which
there is a randomly distributed waiting time ¢ > 0 at each
site. On the diamond hierarchical lattice, Roux et al.
[16] demonstrated that if the waiting times have the
power-law distribution f(¢) given by Eq. (1.2), the ex-
ponents a and B are independent of 7 for all 7> 1.
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The model studied by Roux et al. differs trivially from
our model with p =1: Their waiting times are assigned to
sites, while our transit times reside on bonds. This dis-
tinction should be irrelevant. The diamond hierarchical
lattice resembles 2D Euclidean lattices in many respects
[16,17], and can be thought of as providing a crude renor-
malization group approximation to a square lattice [18].
The work of Roux et al. therefore suggests that in our
model, the exponents should take on the same values for
all 7> 1. For 7> 2, the mean bond transit time 7 is finite,
and we expect a and 8 to take on their KPZ values.
Thus the work on the diamond hierarchical lattice leads
us to the speculation that the exponents in our model as-
sume their KPZ values for all 7> 1.

Our simulations for 7=3 agree with this speculation.
For 7=1.75, however, we find anomalous values for the
critical exponents. For example, we find a=0.43+0.01,
which differs markedly from the KPZ value. This small
value of a indicates that the interface is unusually smooth
for 7=1.75. To our knowledge, a nonzero value of a
that is smaller than the KPZ value } has not previously
been observed [19]. Our finding indicates that, at least in
one respect, the diamond hierarchical lattice differs
significantly from a 2D Euclidean lattice.

The paper is organized as follows: In Sec. II, we de-
scribe the algorithm used in the simulations. Section III
is concerned with the simulations at the percolation
threshold, while the results obtained for p =1 are
presented in Sec. IV. In Sec. V, the main results obtained
in this study are summarized.

II. ALGORITHM

We performed simulations of FPP on a square lattice
with the transit time distribution given by Eqgs. (1.1) and
(1.2). The simulations were carried out on a finite square
grid L sites wide and H sites high with periodic boundary
conditions in the x direction (Fig. 1). For simplicity, we
take the lattice spacing a to be unity. At the beginning of
each run, all sites in the base row y =0 were ignited
simultaneously. All of the other lattice sites were initially
unburnt. This initial condition was chosen because it
leads to smaller fluctuations than the initial condition in
which a single site is set alight at  =0.

We assigned a transit time to a bond only when one of

y A

(o, O

LTI

0

FIG. 1. A schematic representation of the front on a square
lattice L sites wide. Periodic boundary conditions are imposed
in the x direction, so that the rows at x =0 and L coincide.
Bold (thin) lines represent burned (unburned) material. Black
(white) dots are burnt (surface) sites.
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the sites at its ends started burning. In this way, we
avoided assigning transit times to bonds that were never
reached by the flame front. At time ¢ =0, the state of the
bonds was unknown, except for the L vertical bonds con-
necting the rows y =0 and 1.

At any time ¢, we define the surface of the burned re-
gion to be the set of unburnt sites which lie on currently
burning bonds. This surface can have both overhangs
and disconnected loops (Fig. 1). The surface sites were
stored in a list £ which was ordered according to the
times ?; mnecessary for the front to reach them.
Specifically, the first site in the list had the smallest t,
value, and the sites which followed it had successively
larger values of t5. The first site in the list is the first sur-
face site to be burnt, and will be labeled o.

At each step of the simulation, the following opera-
tions were performed sequentially.

(i) Time was incremented by the exact amount 6¢
necessary for the front to reach the site o.

(ii) The burning times tp associated with the surface
sites were all decreased by 6¢.

(iii) The site o was removed from the list =.

(iv) Each of the four nearest-neighbor sites of o was
then tested in turn. If a given nearest-neighbor site was
still unburned, the bond connecting it to o was randomly
assigned a transit time ¢ drawn from the distribution
P(t). If the site was an additional surface site, it was in-
serted into list 2 with 73 =t¢. If it was not an additional
surface site, the value of t5 for this site was replaced by ¢
ift <tg.

This algorithm was repeated until a given time ¢,
had elapsed. In practice, the time ¢,,, was chosen so
that the top row y =H was never reached by the front,
and therefore the grid appeared to be infinite in the verti-
cal direction. The average number N of burnt sites and
their mean distance Y from the base row y =0 were com-
puted at each time step.

III. RESULTS FOR p =p,

For kinetic percolation with p =p_ on an infinite lattice
at large times [3,9],

Y~t¢}’ (3.1)

and

¢

N~t™". (3.2)

Grassberger has estimated the values of the kinetic criti-
cal exponents ¢, and ¢, using Monte Carlo simulations,
and finds ¢,=0.8831+0.003 and ¢,=0.793+0.004 [9].
These exponents are related through the scaling relation

¢, /6,=d;—1, (3.3)

where d is the fractal dimension of the infinite cluster at
threshold [9,20]. The exact value of d; is 3 [21], and so
Grassberger’s estimates of ¢, and ¢, are consistent with
Eq. (3.3).

In our model, kinetic percolation is recovered in the
limit 7— oo, where the mean bond transit time 7 is equal
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to 1. We expect that ¢, and ¢, will take on their 7= o
values for any 7> 2, since 7 is finite in this range. Con-
versely, 7 diverges for 7€(1,2], and anomalous values of
the kinetic critical exponents could occur. The exponents
¢, and ¢, most likely vary continuously with 7 in this in-
terval.

A series of simulations of our model was performed at
the bond percolation threshold p=p,=1. The simula-
tions were carried out on strips of width L ranging from
1024 to 4096. To compare the data obtained with
different strip widths and different 7 values, we used a di-
mensionless time T=t/t ... A log-log plot of Y as a
function of T is curved even at T=1. As a result, we had
to extrapolate our data to the limit T— . It was also
necessary to account for finite-size corrections coming
from the finite strip width L. In order to reach both the
1/L —0 and 1/T —0 limits, we used the following extra-
polation scheme.

(a) log Y was plotted as a function of log T for a given
L value. A linear regression was made for all points with
T>T,, giving the estimator ¢,(L,T,). Extrapolating
these estimators to 1/L =0, we obtained ¢,(,T,).

(b) Step (a) was carried out for different times T, and
¢,(0,T,) was extrapolated to 1/7,=0 to obtain the
final estimate for ¢,.

A similar procedure was used to extract ¢, from the
data for N(z). Steps (a) and (b) were carried out with the
data obtained for 7=1.8. The results of this two-step ex-
trapolation are displayed in Fig. 2. Our final estimates of
the kinetic critical exponents are ¢, =0.814+0.004 and
¢,=0.73910.003. These exponents are definitely
different from their counterparts for kinetic percolation.

Far behind the front, all bonds with finite transit times
will have burned. Thus, in this region, the burned sites
have the same fractal dimension as the infinite percola-
tion cluster at threshold. For this reason, the scaling re-
lation (3.3) holds for all ; the proof runs precisely paral-
lel to that for kinetic percolation [9,20]. With our esti-
mates of ¢, and ¢, for 7=1.8, we obtain
é,/4,=0.9081+0.008, a value which is slightly too high,
but which is nonetheless in satisfactory agreement with
the expected result d, —1=4=0.8958. . ..

Similar calculations were performed for a number of 7
values. However, only two strip widths, L =1024 and
4096, were considered for 7#1.8. Instead of extrapolat-
ing our data to 1/L —0, we simply used the results ob-
tained for L =4096. The systematic error introduced by
this approximation is rather small for r=1.8 [see Fig.
2(a)]. For 71.8, the results obtained for L =1024 and
4096 do not differ by much, and so our approximation is
reasonably accurate. However, it should be kept in mind
that ¢, and to a smaller extent ¢, are systematically un-
derestimated for 7#1.8. In every case, we extrapolated
to 1/T—0. The resulting estimates of ¢, and ¢, for 7in
the range (1,2] are plotted in Figs. 3 and 4, respectively.
Both exponents increase nonlinearly with 7. As 7—1, we
expect these exponents to tend to zero, since the probabil-
ity that the transit time along a bond is less than any
finite value vanishes in this limit. On the other hand, the
exponents appear to tend to their kinetic percolation
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FIG. 2. Two-step extrapolation of the data obtained for
7=1.8 for ¢, (M) and ¢, (@). (a) Linear extrapolation to
1/L —0 of the estimates ¢,(L,T.) and ¢,(L,T.) for T,=0.1.
(b) Linear extrapolation to 1/T,—0 of the estimates ¢,(,T,)
and ¢,(,T,). The results of this extrapolation give the final
estimates for ¢, and ¢,.
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FIG. 3. The kinetic critical exponent ¢, (M) as a function of
7. The error bars are comparable in size to the symbols used.
The continuous curve shows the prediction of the variational
theory of Kerstein and Edwards. The open circle is
Grassberger’s estimate for ¢, for kinetic percolation.
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FIG. 4. The kinetic critical exponent ¢, (@) as a function of
7. The error bars are comparable in size to the symbols used.
The open circle is Grassberger’s estimate for ¢, for kinetic per-
colation.

values as 7— 2, as expected [22].

Similar  calculations for 7=3 and 5 gave
#,=0.873+£0.002 and ¢,=0.795£0.003 in both cases.
These results are consistent with our belief that the ex-
ponents for kinetic percolation should be found for any
> 2.

A simple scaling argument shows that

10,

¢, v
where v is the exponent characterizing the divergence of
the correlation length. Thus if ¢, varies continuously
with 7 for 1 <7<2, then so must 6. Moreover, if ¢, as-
sumes its kinetic percolation value for 7= 2, then so must
6.

The result of KE’s variational theory [Eq. (1.3)] can be
used to obtain an approximate expression for ¢, that ap-
plies in the range 1<7<2. Let ¢,, be the value of the
exponent ¢, that prevails for 7>2. Combining Egs. (1.3)
and (3.4) and the exact result v=2 [21], we have [23]

(3.4

2—7
7—1

1_1+3

¢y ¢y,0 4

This prediction is compared with the results of our simu-
lations in Fig. 3. (Grassberger’s value for ¢, , was used.)
The agreement is reasonably good throughout the range
of 7 values, although the theoretical values for ¢, are
consistently too small. In fact, as noted by KE, the varia-
tional theory overestimates the exponent 8. This means
that the variational estimate for ¢, should be less than
the true value, just as we have found.

(3.5)

IV. RESULTS FOR p=1

A series of simulations of our model were carried out
on strips of width L for p=1. We computed the average
height of the surface
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1 %
y(t)=— - 4.1
y(t) N, igly, (4.1a)
as well the surface width
1 N, 172
w(t)= S y—y)? (4.1b)
s i=1

Here N, is the total number of surface sites and y; is the y
coordinate of the ith surface site. We also calculated the
total number N (¢) of burnt sites at time ¢ and a charac-
teristic height

h(t)=N(t)/L . (4.2)

Since A is to a good approximation proportional to ¢
for all but the earliest times, Eq. (1.5) may be rewritten

L® for h >>L*

" |nB for h <<L*. @.3)

w
It seemed likely to us that the exponents a and B would
take on their KPZ values for 7>2. However, we also ex-
pected anomalous scaling to occur for 1 <7<2. We per-
formed simulations for 7=1.75 and 3 to test these beliefs.
To determine the exponents a and 8, we performed simu-
lations in two distinct limits: A >>L%and h <<L?Z

A. The case h >>L*

In this case, the simulations were performed on rela-
tively narrow strips. The strip width was varied from
L=4 to 128 and the data were averaged over
1000-16 000 independent runs for each L value. Figure
5 is a log-log plot of the front width w as a function of
time ¢ for our two different 7 values. At sufficiently large
times, w saturates at a constant value w;. The w; esti-
mates increase as L“ as shown in Fig. 6. Linear least-
squares fits to the data for L > 16 give

0.43+0.01 for r=1.75

= 10.49340.003 for =3 . (4.4)

log,, t

FIG. 5. Log-log plots of the front width w as a function of
the time ¢. The data for 7=1.75 (@) and 3 (M) were both com-
puted on a strip of width L =91 and were averaged over 1400
samples each.
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FIG. 6. Log-log plots of the saturation width w; as a func-
tion of the strip width L for 7=1.75 (@) and 3 (W). The straight
lines are linear regressions through the data points. The slopes
of these lines give the exponent f3 for these two 7 values.

B. The case h << L*

Wider strips were used here, and the number of in-
dependent runs varied from 4000 for L =512 to 240 for
L =8192. The front width w; and the characteristic
height h; were computed at 50 different times ¢;
(i=1,2,...,50). The log-log plots of w; as a function of
h; are definitely not linear. To extract the asymptotic
behavior of these data, we used the estimator

_ log(w; 4y /w; _y)

= 4.5
! lOg(hi+1/hi_l) ( )

for the exponent 5. We assumed that S3; is a linear func-
tion of 1/h; at long times (Fig. 7) and then extrapolated
to the limit 1/h;—0. The resulting estimates of B de-
pend on L, and B; will denote the estimate for the strip
width L. The variations of B; with 1/L are displayed in
Fig. 8. Although the scatter of the data points is not
negligible, the assumption of linear behavior seems
reasonable. Linear extrapolation to 1 /L —0 gave

0.36 T T T T T T

0.34

0.32

B oa

0.28 ]

0.26 9

0.24 ! I 1 L I I I

FIG. 7. B; vs hsy/h; for 7=1.75 (@) and 3 (M). The strip
width L was 4096 in both cases. The lines are least-squares fits
to the data points, and the intercepts give ;.
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FIG. 8. B, vs 1/L for =1.75 (B) and 3 (@). The error bars
represent one standard deviation, and the lines are least-squares
fits to the data points.

B=0.288+0.002 for 7=1.75 . (4.6)

Combining this result with our estimate of a [Eq. (4.4)],
we obtain

z=a/B=1.49+0.05 for r=1.75 . 4.7)
Similarly, we found

B=0.334+0.004 for r=3 (4.8)
and

z=a/B=1.48%£0.01 for r=3 . 4.9)

Our results strongly suggest that the exponents a and 8
take on their KPZ values for 7=3. We believe that the
exponents have constant values for all 7> 2, since the
mean bond transit time 7 is finite in this regime. On the
other hand, our estimates of the exponents a and B for
7=1.75 differ significantly from the KPZ values 1 and 1.
Thus we find anomalous scaling for 7=1.75, contrary to
the speculation made in Sec. I. This indicates that the di-

amond hierarchical lattice may not be as good a represen-
tation of a 2D Euclidean lattice as is sometimes supposed.

It seems likely that ¢ and B vary continuously with 7
for 7€(1,2]. To test this, calculations would be neces-
sary for 7 values between 1 and 2 other than 1.75. Unfor-
tunately, the saturation regime for w shifts to much
longer times when 7 is decreased, so that the computing
time would have to be dramatically increased. On the
other hand, as 7 tends to 2, the exponents should tend to
their KPZ values. As a result, data for 7>1.75 would
have to be averaged over a greater number of samples,
since it would be necessary to estimate the exponents
with greater accuracy. For both 7>1.75 and 7<1.75,
the computing power needed exceeds that currently avail-
able to us.

V. CONCLUSIONS

In this paper, we performed Monte Carlo simulations
of front propagation in a 2D random medium in which a
fraction 1—p of the bonds have infinite transit time and
the remainder have finite transit times drawn from a
power-law distribution. At the percolation threshold
p =p,., our results indicate that the kinetic critical ex-
ponents assume their usual values for 7>2. In contrast,
these exponents vary continuously with 7 for 7€ (1,2].
Our results are in reasonable agreement with the approxi-
mate variational theory of Kerstein and Edwards in this
regime. For p=1, all of the bonds have finite transit
times. The kinetics of the front appear to be correctly de-
scribed by the Kardar-Parisi-Zhang equation when 7=3.
We expect the same asymptotic behavior for all 7>2,
since the mean bond transit time is finite in this regime.
On the other hand, we find anomalous scaling behavior
for 7=1.75. It seems likely that the kinetic critical ex-
ponents vary continuously with 7 for 1 <7<2.
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